中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Pharmacology 2019-Jun

Dihydromyricetin ameliorates memory impairment induced by acute sleep deprivation.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Hongxiang Li
Fan Yu
Xiaoyuan Sun
Lijia Xu
Jianhua Miu
Peigen Xiao

关键词

抽象

Dihydromyricetin (DHM), the major bioactive flavonoid ingredient extracted from the leaves of Ampelopsis grossedentata (Hand.-Mazz) W.T. Wang displays multiple pharmacological activities, including oxidation resistance, anti-tumour properties and free radical scavenging capacities. However, the role of DHM in sleep deprivation (SD)-induced memory impairments and its underlying molecular mechanisms are unclear. The aim of the present study was to evaluate the effects of DHM on oxidative stress and its role in ameliorating memory impairment induced by acute SD. DHM (100, 50, 25 mg/kg) and melatonin (10 mg/kg) were administered to mice via oral gavage. The open field test was used to evaluate motor function. Spatial learning and memory were assessed using the Morris water maze task. Malondialdehyde, glutathione, and glutathione disulfide levels, as well as superoxide dismutase enzyme activity, were assessed to determine the level of oxidative stress. In addition, we employed quantitative real-time PCR assays to examine the gene expression of 29 key proteins, including protein kinase A (PKA), cAMP response element binding protein (CREB), and adcy1. The levels of proteins including those of GABABRS, GABAARα5, GluR1, BDNF and PSD95, were detected by western blotting. The results showed that DHM significantly attenuated SD-induced spatial learning and memory impairments (P < 0.01). The possible underlying mechanisms of DHM may be attributed to its ability to reduce oxidative stress and restore synaptic plasticity.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge