中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Botany 2004-Aug

Dimethylsulphoniopropionate (DMSP) and related compounds in higher plants.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Marinus L Otte
Graham Wilson
James T Morris
Bridget M Moran

关键词

抽象

Dimethylsulphoniopropionate (DMSP) is produced in high concentrations in many marine algae, but in higher plants only in a few salt marsh grasses of the genus Spartina, in sugar canes (Saccharum spp.), and in the Pacific strand plant Wollastonia biflora (L.) DC. The high concentrations found in higher plants (up to 250 micromol g(-1) dry weight) suggest an important role, but though many functions have been suggested (including methylating agent, detoxification of excess sulphur, salt tolerance, and herbivore deterrent), its actual functions remain unclear. The fact that the ability to produce DMSP in high concentrations is found in species that have no taxonomic or ecological relationship suggests that the compound evolved independently and serves different functions in different plants. This is supported by observations that DMSP in W. biflora behaves differently from that in Spartina species. While DMSP concentrations in W. biflora have been found to increase with increasing salinity, suggesting a role in osmotic control, such a relationship has not been found for DMSP in Spartina species. Recent observations on tissue culture showed that, while undifferentiated tissue of W. biflora produced DMSP, such material of Spartina alterniflora Loisel. did not. Ongoing studies with tissue culture of both species have opened up new avenues of research on DMSP in higher plants, ultimately to elucidate the functions of this enigmatic compound.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge