中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Pharmacology 1999-Dec

Dioclein, a new nitric oxide- and endothelium-dependent vasodilator flavonoid.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
V S Lemos
M R Freitas
B Muller
Y D Lino
C E Queiroga
S F Côrtes

关键词

抽象

In the present work, the vasorelaxant effect of dioclein, a new flavonoid isolated from Dioclea grandiflora (Leguminoseae), was investigated in the rat aorta. Dioclein induced a concentration-dependent relaxation in vessels pre-contracted with phenylephrine (IC(50)=1.3+/-0.3 microM), a response which was abolished after endothelium removal. Neither indomethacin (10 microM), an inhibitor of cyclo-oxygenase, nor atropine (1 microM), an antagonist of muscarinic receptors, modified the effect of dioclein. Dioclein (30 microM) induced a significant increase in guanosine 3':5'-cyclic monophosphate (cyclic GMP) levels in aortic rings with endothelium. The nitric oxide (NO) synthase inhibitor, N(G)-nitro-L-arginine-methyl-ester (L-NAME, 300 microM), strongly inhibited or abolished the relaxing effect and rise in cyclic GMP levels induced by dioclein. Furthermore, dioclein (30 microM) had no effect on the endothelium-independent relaxation produced by the NO donor, 3-morpholino-sydnonimine (SIN-1), while superoxide dismutase (100 U ml(-1)) significantly potentiated it. These results indicate that, in the rat aorta, dioclein induces a NO- and endothelium-dependent vasorelaxant effect, which is associated with cyclic GMP elevation. This vasorelaxation likely results from enhanced synthesis of NO rather than enhanced biological activity of NO.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge