中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archiv der Pharmazie 2019-Dec

Discovery of N-pyridoyl-Δ2 -pyrazolines as Hsp90 inhibitors.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Sundeep Kadasi
Ravali Yerroju
Swetha Gaddam
Nikhila Pullanagiri
Meghana Chary
Divya Pingili
Shiva Raj
Nulgumnalli Raghavendra

关键词

抽象

Hsp90, as a key molecular chaperone, plays an important role in modulating the activity of many cell signaling proteins and is an attractive target for anticancer therapeutics. Herein, we report the discovery of N-pyridoyl-Δ2 -pyrazoline analogs as novel Hsp90 inhibitors by integrated approaches of drug design, organic synthesis, cell biology, and qualitative proteomic analysis. Novel chemical compounds were designed and optimized in the adenosine triphosphate-binding site of Hsp90; lead optimized compounds were found to have significant interactions with Asp93 and other amino acids crucial for Hsp90 inhibition. The designed compounds were synthesized by a two-step procedure; different aromatic aldehydes were reacted with various acetophenones to form substituted 1,3-diphenyl-prop-2-enones (Ic-Io), which upon reaction with isonicotinic acid hydrazide in the presence of glacial acetic acid form N-pyridoyl-Δ2 -pyrazoline compounds (PY1-PY13). Compounds PY3, PY2, and PY1 were identified as potential leads amongst the series, with promising anticancer activity against human breast cancer and melanoma cells, and the ability to inhibit Hsp90 similar to radicicol by drug-affinity responsive target stability proteomic analysis in a whole-cell assay.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge