中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Dental Research 2015-Jun

Disruption of Tgfbr2 in odontoblasts leads to aberrant pulp calcification.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Y H Ahn
T H Kim
H Choi
C H Bae
Y M Yang
J A Baek
J C Lee
E S Cho

关键词

抽象

Transforming growth factor β (TGF-β) signaling has been implicated in dentin formation and repair; however, the molecular mechanisms underlying dentin formation remain unclear. To address the role of TGF-β signaling in dentin formation, we analyzed odontoblast-specific Tgfbr2 conditional knockout mice. The mutant mice had aberrant teeth with thin dysplastic dentin and pulpal obliteration, similar to teeth from human patients with dentinogenesis imperfecta type II and dentin dysplasia. In mutant, the odontoblasts lost their cellular polarity, and matrix secretion was disrupted after mantle dentin formation. As a consequence, the amount of predentin decreased significantly, and an ectopic fibrous matrix was formed below the odontoblast layer. This matrix gradually calcified and obliterated the pulp chamber with increasing age. Immunohistochemistry revealed decreased expression of alkaline phosphatase in mutant odontoblasts. In mutant dentin, Dsp expression was reduced, but Dmp1 expression increased significantly. Collagen type I, biglycan, and Dsp were expressed in the ectopic matrix. These results suggest that loss of responsiveness to TGF-β in odontoblasts results in impaired matrix formation and pulpal obliteration. Our study indicates that TGF-β signaling plays an important role in dentin formation and pulp protection. Furthermore, our findings may provide new insight into possible mechanisms underlying human hereditary dentin disorders and reparative dentin formation.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge