中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Dose-Response 2012

Dose-response thresholds for progressive diseases.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Louis Anthony Tony Cox

关键词

抽象

Many diseases, including cancers, heart diseases, and lung diseases, can usefully be viewed as arising from disruption of feedback control systems that normally maintain homeostasis of tissues and cell populations. Excessive exposure can destabilize feedback control loops, leading to sustained elevation of variables to saturated levels and clinical consequences such as chronic unresolved inflammation, destruction of tissue (as in emphysema), proliferation of cell populations (as in lung cancer), and increases in reactive oxygen species and protease levels (as in coronary heart diseases and chronic obstructive lung disease). We propose a framework for understanding how exposure can destabilize normally homeostatic feedback control systems and create sustained imbalances and elevated levels of disease-related variables, by creating a new, locally stable, alternative equilibrium for the dynamic system, in addition to its normal (homeostatic) equilibrium. The resulting model, which we call alternative-equilibria (AE) theory, implies the existence of an exposure threshold below which transition to the alternative equilibrium (potential disease) state will not occur. Once this threshold is exceeded, progression to the alternative equilibrium continues spontaneously, even without further exposure. These predictions may help to explain patterns observed in experimental and epidemiological data for diseases such as COPD, silicosis, and inflammation-mediated lung cancer.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge