中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
British Journal of Cancer 1987-Sep

Effects on intermediary metabolism in mouse tissues by Ro-03-8799.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
P Tamulevicius
G Luscher
C Streffer

关键词

抽象

Glucose and lipid metabolism in the brain, liver and in a transplanted tumour were found to be variously altered within 2 to 3 h of administering single doses of the radiosensitizer Ro-03-8799 to normal and tumour-bearing mice. Hepatic lactate and glycerol-3-phosphate (G3P) levels were decreased but those of the ketone body beta-hydroxybutyrate (beta-HOBu) were raised. However, in the tumour, these levels were all enhanced. The lactate levels in brain remained relatively constant but both beta-HOBu and G3P levels were altered in a manner similar to that in the liver. The levels of glucose were approximately doubled in blood, brain and tumour, but whereas tumour G6P levels increased, those in the brain were lowered to below the limits of detection. Hepatic glucose levels were significantly decreased after 1 h but G6P levels were not affected. These changes could neither be related to inhibitory effects on hepatic glucokinase or brain hexokinase activity nor to limiting amounts of ATP in both tissues. However, the activity of glucose-6-phosphatase (G6P'ase) was distinctly raised in the liver and the hepatic glycogen stores were also rapidly lowered. Overall, the results suggest that Ro-03-8799 exerts a stimulatory effect on glucose production in the liver. In both liver and brain the levels of free fatty acids and phospholipids were increased whereas those of esterified fatty acids were lowered. Most importantly, the changes in metabolite levels affect the cellular redox couples; those of the cytosol (lactate/pyruvate; G3P/dihydroxyacetone phosphate (DAP] are directed towards the oxidised state in the liver but to a more reduced state in the tumour. The mitochondrial couple (beta-HOBu/acetoacetate (AcAc)) in both tissues is shifted towards the reduced state. These metabolic changes may result in an increase in the degree of hypoxia in the tumour and may well play an important role in the development of neuropathies.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge