中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Botany 2001-Apr

Elicitor-induced changes in isoflavonoid metabolism in red clover roots.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
S Tebayashi
A Ishihara
H Iwamura

关键词

抽象

When roots of 5-d-old red clover (Trifolium pratense L.) seedlings were treated with chitohexaose and CuCl(2), constitutive glucosidic conjugates of formononetin (F) and (-)-maackiain (Ma) promptly disappeared. Free F and Ma, which were not detected in the control tissues, rapidly appeared to reach the maximum levels 24 h after the initiation of treatment and then declined. The pattern of appearance and disappearance was the same between the tissues treated with chitohexaose and CuCl(2). The enzyme activities related to isoflavonoid metabolism were investigated using crude extracts from elicitor-treated roots. The conjugate-forming glucosyltransferase and malonyltransferase activities were lost or markedly reduced after elicitor treatment. On the other hand, malonylesterase and glucosidase activities remained unchanged or showed only slight increase. Phenylalanine ammonia-lyase activity disappeared following elicitor treatment. These results indicated that free aglycones were produced from the conjugate pool by hydrolysis under conditions in which the biosynthetic pathway was extinguished. The amount of Ma produced did not explain that of MaGM lost (about 45%). Since Ma, but not its conjugates, served as a substrate for peroxidase from the elicitor-treated roots, Ma was considered to be converted to insoluble materials.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge