中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pesticide Biochemistry and Physiology 2015-Nov

Enantioselective phytotoxicity and bioacitivity of the enantiomers of the herbicide napropamide.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Yanli Qi
Donghui Liu
Wenting Zhao
Chang Liu
Zhiqiang Zhou
Peng Wang

关键词

抽象

Enantioselectivity of chiral pesticide enantiomers should be taken into consideration in pesticide application and environmental risk assessment. The phytotoxicity of the enantiomers of napropamide to cucumber, soybean, and the bioactivity to the target weeds Poa annua and Festuca arundinacea have been studied in this work. To the nontarget crops, the influences of napropamide on the root, shoot, fresh weight, chlorophyll, superoxide dismutase (SOD) and catalase (CAT) activities and membrane lipid peroxides have been studied. (-)-Napropamide was more toxic than the racemate and (+)-napropamide to soybean and cucumber in terms of root, shoot and fresh weight. The content of chlorophyll was not affected by napropamide. The impacts on the activities of SOD, CAT and membrane lipid peroxides showed that napropamide could induce the oxidative stress and rac-napropamide caused a stronger oxidative damage to cucumber and soybean than (-)-napropamide and (+)-napropamide. For the target weeds, the influences of napropamide on root, shoot and fresh weight have been studied. (-)-Napropamid was more active to P. annua, while rac-napropamide was more active to F. arundinacea. To reduce environmental pollution and improve the effectiveness of chiral pesticide, single enantiomer should be developed and produced. This work may provide evidence for developing optical pure product.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge