中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Inorganic Biochemistry 2002-Jul

Engineering the proximal heme cavity of catalase-peroxidase.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Christa Jakopitsch
Günther Regelsberger
Paul Georg Furtmüller
Florian Rüker
Günter A Peschek
Christian Obinger

关键词

抽象

Catalase-peroxidases (KatGs) are prokaryotic heme peroxidases with homology to yeast cytochrome c peroxidase (CCP) and plant ascorbate peroxidases (APXs). KatGs, CCP and APXs contain identical amino acid triads in the heme pocket (distal Arg/Trp/His and proximal His/Trp/Asp), but differ dramatically in their reactivities towards hydrogen peroxide and various one-electron donors. Only KatGs have high catalase activity in addition to a peroxidase activity of broad specificity. Here, we investigated the effect of mutating the conserved proximal triad on KatG catalysis. With the exception of W341F, all variants (H290Q, W341A, D402N, D402E) exhibited a catalase activity <1% of wild-type KatG and spectral properties indicating alterations in heme coordination and spin states. Generally, the peroxidase activity was much less effected by these mutations. Compared with wild-type KatG the W341F variant had a catalase and halogenation activity of about 40% and an even increased overall peroxidase activity. This variant, for the first time, allowed to monitor the hydrogen peroxide mediated transitions of ferric KatG to compound I and back to the resting enzyme. Compound I reduction by aromatic one-electron donors (o-dianisidine, pyrogallol, aniline) was not influenced by exchanging Trp by Phe. The findings are discussed in comparison with the data known from CCP and APX and a reaction mechanism for the multifunctional activity of the W341F variant is suggested.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge