中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applied and Environmental Microbiology 1996-Nov

Enzymes of Poly-(beta)-Hydroxybutyrate Metabolism in Soybean and Chickpea Bacteroids.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
S A Kim
L Copeland

关键词

抽象

The enzymatic capacity for metabolism of poly-(beta)-hydroxybutyrate (PHB) has been examined in nitrogen-fixing symbioses of soybean (Glycine max L.) plants, which may accumulate substantial amounts of PHB, and chickpea (Cicer arietinum L.) plants, which contain little or no PHB. In the free-living state, both Bradyrhizobium japonicum CB 1809 and Rhizobium sp. (Cicer) CC 1192, which form nodules on soybean and chickpea plants, respectively, produced substantial amounts of PHB. To obtain information on why chickpea bacteroids do not accumulate PHB, the specific activities of enzymes of PHB metabolism (3-ketothiolase, acetoacetyl-coenzyme A reductase, PHB depolymerase, and 3-hydroxybutyrate dehydrogenase), the tricarboxylic acid cycle (malate dehydrogenase, citrate synthase, and isocitrate dehydrogenase), and related reactions (malic enzyme, pyruvate dehydrogenase, and glutamate:2-oxoglutarate transaminase) were compared in extracts from chickpea and soybean bacteroids and the respective free-living bacteria. Significant differences were noted between soybean and chickpea bacteroids and between the bacteroid and free-living forms of Rhizobium sp. (Cicer) CC 1192, with respect to the capacity for some of these reactions. It is suggested that a greater potential for oxidizing malate to oxaloacetate in chickpea bacteroids may be a factor that favors the utilization of acetyl-coenzyme A in the tricarboxylic acid cycle over PHB synthesis.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge