中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
The American journal of physiology 1992-Nov

Erythrocyte K-Cl cotransport: properties and regulation.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
P K Lauf
J Bauer
N C Adragna
H Fujise
A M Zade-Oppen
K H Ryu
E Delpire

关键词

抽象

Erythrocytes possess a Cl-dependent, Na-independent K transport system cotransporting K and Cl in a 1:1 stoichiometry that is membrane potential independent. This K-Cl cotransporter is stimulated by cell swelling, acidification, Mg depletion, and thiol modification. Cell shrinkage, elevation of cellular divalent ions, thiol alkylation, phosphatase inhibitors, and derivatives of certain loop diuretics and stilbenes are inhibitory. Thus regulation of K-Cl cotransport at the membrane and cytoplasmic levels is highly complex. Basal K-Cl cotransport decreases with cellular maturation, whereas its modes of stimulation and inhibition are variable between species. The physiological inactivation appears to be prevented in low-K animal erythrocytes. In certain human hemoglobinopathies, K-Cl cotransport may be the cause of cellular dehydration and volume decrease. K-Cl cotransport occurs also in nonerythroid cells, such as in epithelial and liver cells of other species. At the threshold of molecular characterization, this comprehensive review places our present understanding of the mechanisms modulating K-Cl cotransport physiologically and pathophysiologically into kinetic and thermodynamic perspectives.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge