中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Yao xue xue bao = Acta pharmaceutica Sinica 2016-04

[Establish and use of an epilepsy model in larval zebrafish].

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Yang-min Zheng
Jing-pu Zhang
Sheng Tang
Dan-qing Song

关键词

抽象

Epilepsy is a kind of neurogenic diseases with high prevalence and characterized by seizure, brain paradoxical discharge and convulsion in spontaneous, transient, recurrent and uncontrolled manner. Development of new anti-epilepsy drugs requires a new reliable and high-performance animal models in screening of leading compounds. In this study, an epilepsy model in larval zebrafish was established using pentylenetetrazole (PTZ) compound. The results show that PTZ induced epilepsy-like seizure behavior such as irregular circular swimming, exciting locomotion, high swim velocity and convulsion in zebrafish. Expression patterns of two epilepsy-related gene c-fos and lgi1 were analyzed using RT-PCR and in situ hybridization; c-fos was enhanced and extended and lgi1 expression was reduced in PTZ concentration-dependent in the larval brain. When the model larvae exposed to anticonvulsant valproate(VPA), the epilepsy-like symptom decreased or disappeared, the marker genes c-fos and lgi1, as well as NeuN protein recovered to the normal levels. These responses to PTZ and to antiepileptic drug VPA are consistent with the observations in clinical studies and mouse models. Using this model, we evaluated anti-epilepsy activity of compounds Y53 and BMT, two homolog of berberine. The results show that the model larvae seizure triggered by lighting was partly remedied by Y53; and the larval exciting locomotion under the condition of no stimulation was suppressed by BMT. The findings indicate that the zebrafish larval epilepsy model is able to distinguish compounds with different activities in eleptiform seizure. We conclude that the zebrafish epilepsy model may be as a reliable and useful platform in screening of new anti-epilepsy candidates, which is suitable for basic research in epilepsy pathogenesis.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge