中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2006-Mar

Excitation energy partitioning and quenching during cold acclimation in Scots pine.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Dmitry Sveshnikov
Ingo Ensminger
Alexander G Ivanov
Douglas Campbell
Jon Lloyd
Christiane Funk
Norman P A Hüner
Gunnar Oquist

关键词

抽象

We studied the influence of two irradiances on cold acclimation and recovery of photosynthesis in Scots pine (Pinus sylvestris L.) seedlings to assess mechanisms for quenching the excess energy captured by the photosynthetic apparatus. A shift in temperature from 20 to 5 degrees C caused a greater decrease in photosynthetic activity, measured by chlorophyll fluorescence and oxygen evolution, in plants exposed to moderate light (350 micromol m(-2) s(-1)) than in shaded plants (50 micromol m(-2) s(-1)). In response to the temperature shift, maximal photochemical efficiency of photosystem II (PSII), measured as the ratio of variable to maximal chlorophyll fluorescence (Fv/Fm) of dark-adapted samples, decreased to 70% in exposed seedlings, whereas shaded seedlings maintained Fv/Fm close to initial values. After a further temperature decrease to -5 degrees C, only 8% of initial Fv/Fm remained in exposed plants, whereas shaded plants retained 40% of initial Fv/Fm. Seven days after transfer from -5 to 20 degrees C, recovery of photochemical efficiency was more complete in the shaded plants than in the exposed plants (87 and 65% of the initial Fv/Fm value, respectively). In response to cold stress, the estimated functional absorption cross section per remaining PSII reaction center increased at both irradiances, but the increase was more pronounced in exposed seedlings. Estimates of energy partitioning in the needles showed a much higher dissipative component in the exposed seedlings at low temperatures, pointing to stronger development of non-photochemical quenching at moderate irradiances. The de-epoxidation state of the xanthophyll cycle pigments increased in exposed seedlings at 5 degrees C, contributing to the quenching capacity, whereas significant de-epoxidation in the shaded plants was observed only when temperatures decreased to -5 degrees C. Thermoluminescence (TL) measurements of PSII revealed that charge recombinations between the second oxidation state of Mn-cluster S2 and the semireduced secondary electron acceptor quinone Q(B)- (S2Q(B)-) were shifted to lower temperatures in cold-acclimated seedlings compared with control seedlings and this effect depended on irradiance. Concomitant with this, cold-acclimated seedlings demonstrated a significant shift in the S2 recombination with primary acceptor Q(A)- (S2Q(A)-) characteristic TL emission peak to higher temperatures, thus narrowing the redox potential gap between S2Q(B)- and S2Q(A)-, which might result in increased probability for non-radiative radical pair recombination between the PSII reaction center chlorophyll a (P680+) and Q(A)- (P680+)Q(A)-) (reaction center quenching) in cold-acclimated seedlings. In Scots pine seedlings, mechanisms of quenching excess light energy in winter therefore involve light-dependent regulation of reaction center content and both reaction center-based and antenna-based quenching of excess light energy, enabling them to withstand high excitation pressure under northern winter conditions.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge