中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Reproduction and Development 2016-Aug

Exogenous neurotensin modulates sperm function in Japanese Black cattle.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Kohei Umezu
Yuuki Hiradate
Toshinori Oikawa
Hirotoshi Ishiguro
Takashi Numabe
Kenshiro Hara
Kentaro Tanemura

关键词

抽象

Recently, the conception rates after artificial insemination have been pointed out to decline continuously. To overcome this problem, the control of frozen and thawed sperm quality is required. However, the mechanism of bovine sperm functional regulation is still largely unknown. In mammals, the ejaculated sperm are capable of showing fertilizing ability during migration in the female reproductive organs. It is well known that these female organs secrete several factors contributing to sperm capacitation. We previously reported that neurotensin (NT) secreted from the oviduct and cumulus cells enhanced sperm capacitation and acrosome reaction in mice. In this study, we confirmed the expression of the NT receptor (NTR1) in the bovine sperm neck region and the secretion of NT in the bovine uterus and oviduct. The similar expression patterns of NT and NTR1 suggests a conserved mechanism of sperm functional regulation between mouse and cattle. Thus, we examined the effects of exogenous NT on the bovine sperm functions. First, we showed that NT induced sperm protein tyrosine phosphorylation in a dose-dependent manner, suggesting that NT enhances sperm capacitation. Second, we showed that NT induced acrosome reactions of capacitated sperm in a dose-dependent manner, suggesting that NT facilitates acrosome reaction. Finally, we used a computer-aided sperm analysis system to show that NT did not have a great effect on sperm motility. These results suggest that NT acts as a facilitator of sperm capacitation and acrosome reaction in the female reproductive tracts in cattle, highlighting the importance of NT-mediated signaling to regulate sperm functions.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge