中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Transgenic Research 1995-Mar

Expression of giant silkmoth cecropin B genes in tobacco.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
D Florack
S Allefs
R Bollen
D Bosch
B Visser
W Stiekema

关键词

抽象

Cecropin B is a small antibacterial peptide from the giant silkmoth Hyalophora cecropia. To reveal the potential of this peptide for engineering bacterial disease resistance into crops, several cecropin B gene constructs were made either for expression in the cytosol or for secretion. All constructs were cloned in a plant expression vector and introduced in tobacco via Agrobacterium tumefaciens. A cDNA-derived cecropin B gene construct lacking the amino-terminal signal peptide was poorly expressed in transgenic plants at the mRNA level, whereas plants harbouring a full-length cDNA-derived construct containing the insect signal peptide, showed increased cecropin B-mRNA levels. Highest expression was found in plants harbouring a construct with a plant-gene-derived signal peptide. In none of the transgenic plants could the cecropin B peptide be detected. This is most likely caused by breakdown of the peptide by plant endogenous proteases, since a chemically synthesized cecropin B peptide was degraded within seconds in various plant cell extracts. This degradation could be prevented by the addition of specific protease inhibitors and by boiling the extract prior to adding the peptide. In addition, anionic detergents, in contrast to cationic, zwitter-ionic or non-ionic detergents, could prevent this degradation. Nevertheless, transgenic tobacco plants were evaluated for resistance to Pseudomonas solanacearum, the causal agent of bacterial wilt of many crops, and P. syringae pv. tabaci, the causal agent of bacterial wildfire, which are highly susceptible to cecropin B in vitro. No resistance was found. These experiments indicate that introduction and expression of cecropin B genes in tobacco does not result in detectable cecropin B protein levels and resistance to bacterial infections, most likely due to degradation of the protein by endogenous proteases.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge