中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Bioorganicheskaia khimiia

[Extracellular proteases of mycelial fungi as participants of pathogenic processes].

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Ia E Dunaevskiĭ
A R Matveeva
G N Fatkhullina
G A Beliakova
T M Kolomiets
E D Kovalenko
M A Belozerskiĭ

关键词

抽象

The interest in proteases secreted by mycelial fungi is due to several reasons of which one of the most important is their involvement in the initiation and development of the pathogenic process. A comparison of saprophytic and phytopathogenic mycelial fungi revealed one characteristic feature, namely, the appearance of a new trypsin-like activity in phytopathogens that is absent in saprophytes. To clear up the question of whether the degree of pathogenicity of a fungus is related to the activity of secreted trypsin-like protease, several species of Fusarium of various pathogenicity were compared. In two species, F. sporotrichioides (which causes ear fusa-riosis of rye) and F. heterosporum (the causative agent of root rot in wheat), a clear correlation between the activity and pathogenicity was revealed: the more pathogenetic F. sporotrichioides exhibited a higher extracellular trypsin-like activity than the less pathogenetic species F. heterosporum. Thus, the presence of trypsin-like activity in a saprotroph-pathogen pair may be an indicator of the pathogenicity of a fungus; in some cases, the value of this activity may indicate the degree of its pathogenicity. This suggests that trypsin-like proteases specific to phytopathogens are directly involved in the pathogenetic process, probably, through interaction with the "sentry" protein or the product of the resistance gene.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge