中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the Mechanical Behavior of Biomedical Materials 2019-Nov

Fatigue performance of distinct CAD/CAM dental ceramics.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Guilardi Lf
Soares P
Werner A
de N
Pereira Gkr
Kleverlaan Cj
Rippe Mp
Valandro Lf

关键词

抽象

This study investigated the effect of surface roughness (polished vs. CAD/CAM milling roughness simulation) on the fatigue behavior of five dental ceramics for manufacturing CAD/CAM monolithic restorations. Specimens of five dental ceramics (FC- feldspathic; PICN- polymer-infiltrated ceramic-network; ZLS- zirconia-reinforced lithium silicate glass-ceramic; LD-lithium disilicate glass-ceramic; YZ-yttria-stabilized tetragonal zirconia polycrystal), to be tested under fatigue (12 × 12 × 1.2 mm3), were assigned into two groups according to surface treatment: polished 'p' (#2500-grit SiC papers) and CAD/CAM milling roughness simulation 'gr' (grinding with #60-grit SiC paper). The fatigue test was performed through the stepwise method (40N-660N; step of 20N; 10,000 cycles/step; 20 Hz frequency). Roughness, topographic and fractographic analyses were performed. The fatigue data were analyzed by Kaplan-Meier and Mantel-Cox (Log rank), and Pearson correlation was used to correlate roughness vs. fatigue data. CAD/CAM milling roughness simulation led to significantly (p < 0.05) greater roughness (Ra and Rz), promoting a more irregular topography with scratches and grooves, and led to a lower fatigue performance for all the tested ceramics. Fractographic analysis depicted the origin of failure at the higher stress concentration side, the side subjected to tensile tension during the fatigue test. The CAD/CAM milling roughness simulation significantly decreased the fatigue performance of the evaluated ceramic materials.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge