中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
FEMS immunology and medical microbiology 2009-Dec

Feedback effects of host-derived adenosine on enteropathogenic Escherichia coli.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
John K Crane
Irina Shulgina

关键词

抽象

Enteropathogenic E. coli (EPEC) is a common cause of diarrhea in children in developing countries. After adhering to intestinal cells, EPEC secretes effector proteins into host cells, causing cell damage and eventually death. We previously showed that EPEC infection triggers the release of ATP from host cells and that ATP is broken down to ADP, AMP, and adenosine. Adenosine produced from the breakdown of extracellular ATP triggers fluid secretion in intestinal monolayers and may be an important mediator of EPEC-induced diarrhea. Here we examined whether adenosine has any effects on EPEC bacteria. Adenosine stimulated EPEC growth in several types of media in vitro. Adenosine also altered the pattern of EPEC adherence to cultured cells from a localized adherence pattern to a more diffuse pattern. Adenosine changed the expression of virulence factors in EPEC, inhibiting the expression of the bundle-forming pilus (BFP) and enhancing expression of the EPEC secreted proteins (Esps). In vivo, experimental manipulations of adenosine levels had strong effects on the outcome of EPEC infection in rabbit intestinal loops. In addition to its previously reported effects on host tissues, adenosine has strong effects on EPEC bacteria, stimulating EPEC growth, altering its adherence pattern, and changing the expression of several important virulence genes. Adenosine, like noradrenaline, is a small, host-derived molecule that is utilized as a signal by EPEC.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge