中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Infection and Immunity 1994-Apr

Genetic regulation of fructosyltransferase in Streptococcus mutans.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
D L Kiska
F L Macrina

关键词

抽象

Streptococcus mutans possesses several extracellular sucrose-metabolizing enzymes which have been implicated as important virulence factors in dental caries. This study was initiated to investigate the genetic regulation of one of these enzymes, the extracellular fructosyltransferase (Ftf). Fusions were constructed with the region upstream of the S. mutans GS5 Ftf gene (ftf) and a promoterless chloramphenicol acetyltransferase (CAT) gene. The fusions were integrated at a remote site in the chromosome, and transcriptional activity in response to the addition of various carbohydrates to the growth medium was measured. A significant increase in CAT activity was observed when glucose-grown cells were shifted to sucrose-containing medium. Sucrose-induced expression was repressed immediately upon addition of phosphoenolpyruvate phosphotransferase system sugars to the growth media. Deletion analysis of the ftf upstream region revealed that an inverted repeat structure was involved in the control of ftf expression in response to carbohydrate. However, the control of the level of ftf transcription appeared to involve a region distinct from that mediating carbohydrate regulation. CAT gene fusions also were constructed with the ftf upstream region from S. mutans V403, a fructan-hyperproducing strain which synthesizes increased levels of Ftf. Sequence analysis of the upstream ftf region in this strain revealed several nucleotide sequence changes which were associated with high-level ftf expression. Comparison of the GS5 and V403 ftf expression patterns suggested the presence of a trans-acting factor(s) involved in modulation of ftf expression in response to carbohydrate. This factor(s) was either absent or altered in V403, resulting in the inability of this organism to respond to the presence of carbohydrate. The sequences of the ftf regions from three additional fructan-hyperproducing strains were determined and compared with that of V403. Only one strain displayed nucleotide changes similar to those of V403. Two additional strains did not have these changes, suggesting that several mechanisms for up-regulation of ftf expression exist.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge