中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of General Physiology 1980-Jan

Giant smooth muscle cells of Beroë. Ultrastructure, innervation, and electrical properties.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
M L Hernandez-Nicaise
G O Mackie
R W Meech

关键词

抽象

Beroë muscle fibers are single cells which may be 20-40 micrometer in diameter in mature specimens. Longitudinal muscles may be 6 cm or more long. There is no striation pattern and the muscles were observed to contract in a tonic fashion when stretched. They are innervated by a nerve net, and external recording revealed what are probably nerve net impulses. Intracellular stimulation of the muscles themselves was found to initiate large propagating action potentials which were recorded intracellularly. The action potentials were insensitive to tetrodotoxin (10(-5) g/ml), tetraethylammonium ions (50 mM), MnCl2 (25 mM), and low concentrations of verapamil (2 X 10(-6) g/ml). Full-size action potentials were recorded in sodium- or calcium-deficient salines, but were small and graded in salines deficient in both sodium and calcium. Cable analysis yielded mean values for lambda (1.95 mm), Ri (154 omega cm), Rm (9,253 omega cm2), and tau m (13.9 ms). The conduction velocity depended primarily on fiber diameter and maximum rate of rise of the action potential and could be predicted from the theoretical analysis of Hunter et al. (1975 Prog. Biophys. Mol. Biol. 30: 99-144). The calculated membrane capacity (less than microF/cm2) indicates little infolding of the surface membrane, a conclusion which is in agreement with anatomical studies.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge