中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Pharmacology 2019-Sep

Glucose consumption assay discovers coptisine with beneficial effect on diabetic mice.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Li-Li Shi
Wei-Hua Jia
Li Zhang
Chun-Yang Xu
Xi Chen
Lin Yin
Nuo-Qi Wang
Lian-Hua Fang
Gui-Fen Qiang
Xiu-Ying Yang

关键词

抽象

Many drugs with anti-diabetic effects regulate glucose consumption in peripheral tissues. Via cellular glucose consumption assays, we identified that coptisine, a main effective constituent from the plant Coptis chinensis, enhanced hepatic and skeletal muscle glucose consumption. We further explored its effects on glucose metabolism in diabetic animals to elucidate its mechanism of action. Our results showed that coptisine did not show cytotoxicity. Intragastric administration of coptisine for ten days in normal ICR mice markedly decreased fasting blood-glucose levels without significant effects on body weight. In alloxan-induced type 1 diabetic mice, intragastric administration of coptisine for 28 days decreased fasting and non-fasting blood-glucose levels as well. In type 2 diabetic KKAy mice, intragastric administration of coptisine for nine weeks improved glucose tolerance. It decreased fasting/non-fasting blood-glucose and fructosamine levels. Coptisine decreased low-density lipoprotein and total cholesterol levels, however, had no significant effect on triglyceride levels. Coptisine increased AMPK phosphorylation while decreasing Akt phosphorylation in HepG2 hepatic cells and C2C12 myotubes. Coptisine also reduced mitochondrial respiration in isolated and cellular mitochondria, suggesting that coptisine lowered cellular energy levels. In particularly, coptisine administration (10-6 M) decreased the mitochondrial oxygen consumption rate (OCR) with a greater extracellular acidification rate (ECAR), resulting in an oxidative-to-glycolysis phosphorylation shifted for cellular energy generation. Our results demonstrate that coptisine acts as an enhancer of peripheral glucose consumption could improve glucose metabolism in diabetic animals. Coptisine may serve as a novel anti-diabetic agent and warrant further evaluation.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge