中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Advances in pharmacology (San Diego, Calif.) 2017

Glycine Receptor Drug Discovery.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Joseph W Lynch
Yan Zhang
Sahil Talwar
Argel Estrada-Mondragon

关键词

抽象

Postsynaptic glycine receptor (GlyR) chloride channels mediate inhibitory neurotransmission in the spinal cord and brain stem, although presynaptic and extrasynaptic GlyRs are expressed more widely throughout the brain. In humans, GlyRs are assembled as homo- or heteromeric pentamers of α1-3 and β subunits. GlyR malfunctions have been linked to a range of neurological disorders including hyperekplexia, temporal lobe epilepsy, autism, breathing disorders, and chronic inflammatory pain. Although it is possible that GlyRs may eventually be clinically targeted for a variety of neurological disorders, most research to date has focused on developing GlyR-targeted treatments for chronic pain. Inflammatory pain sensitization is caused by inflammatory mediators downregulating the magnitude of α3 GlyR-mediated inhibitory postsynaptic currents in spinal nociceptive neurons. Consistent with this paradigm, it is now well established that the selective enhancement of α3 GlyR current magnitude is effective in alleviating inflammatory pain. In this review, we briefly describe the physiological roles and pharmacological properties of GlyRs. We then outline the methods commonly used to discover new GlyR-active compounds and review recent progress, in our laboratory and elsewhere, in developing GlyR-targeted analgesics. We conclude that the eventual development of an α3 GlyR-targeted analgesic is an eminently feasible goal. However, in selecting or designing new therapeutic leads, we caution against the automatic exclusion of compounds with potentiating effects on α1 GlyRs. Also, as GlyRs are strongly potentiated by Zn2+ at nanomolar concentrations, we also caution against the identification of false positives caused by contaminating Zn2+ in otherwise pure compound samples.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge