中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Molecular Biology 2015-Nov

GmmiR156b overexpression delays flowering time in soybean.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Dong Cao
Ying Li
Jialin Wang
Haiyang Nan
Youning Wang
Sijia Lu
Qiong Jiang
Xiaoming Li
Danning Shi
Chao Fang

关键词

抽象

Soybean [Glycine max (L.) Merr.] is an important crop used for human consumption, animal feed and biodiesel fuel. Wering time and maturity significantly affect soybean grain yield. In Arabidopsis thaliana, miR156 has been proposed to regulate the transition from the juvenile to the adult phase of shoot development, which is accompanied by changes in vegetative morphology and an increase in reproductive potential. However, the molecular mechanisms underlying miR156 function in soybean flowering remain unknown. Here, we report that the overexpression of GmmiR156b delays flowering time in soybean. GmmiR156b may target SPL orthologs and negatively regulate GmSPLs, thereby delaying flowering in soybean under LD and natural conditions. GmmiR156b down-regulates several known flowering time regulators in soybean, such as GmAP1 (a, b, c), GmLFY2, GmLFY2, GmFULs, GmSOC1s, GmFT5a, and GmmiR172. These data show that a similar miR156-SPL regulatory module was conserved in the soybean flowering pathway. However, GmFULs, GmSOC1a and GmSOC1b were significantly suppressed under LD conditions but not under SD conditions, which is different in Arabidopsis that these genes were down-regulated irrespective of photoperiod. In addition, GmmiR156b was up-regulated by E1, E2 (GmGI), E3 and E4, which control flowering time and maturity in soybean, and suppressed E1 (E1-Like) and E2 (E2-Like) genes under LD conditions. These data indicated that the miR156-SPL regulatory module was also with some degree of divergent in soybean flowering pathway.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge