中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular diagnosis : a journal devoted to the understanding of human disease through the clinical application of molecular biology 2004

Hereditary hyperekplexia caused by novel mutations of GLRA1 in Turkish families.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Sandra L Gilbert
Fatih Ozdag
Umit H Ulas
William B Dobyns
Bruce T Lahn

关键词

抽象

BACKGROUND

Hyperekplexia, also known as startle disease or stiff-person syndrome, is a neurological condition characterized by neonatal hypertonia and a highly exaggerated startle reflex. Genetic studies have linked mutations in the gene encoding glycine receptor alpha1 (GLRA1) with hereditary hyperekplexia.

METHODS

We analyzed four Turkish families with a history of hyperekplexia. Genomic DNA was obtained from members of these families, and the entire coding sequence of GLRA1 was amplified by PCR followed by the sequencing of PCR products. DNA sequences were analyzed by direct observation using an electropherogram and compared with a published reference sequence.

RESULTS

We identified three novel mutations in GLRA1. These included a large deletion removing the first 7 of 9 exons, a single-base deletion in exon 8 that results in protein truncation immediately after the deletion, and a missense mutation in exon 7 causing a tryptophan-to-cysteine change in the first transmembrane domain (M1). These mutant alleles have some distinct features as compared to previously identified GLRA1 mutations. Our data provides further evidence for mutational heterogeneity in GLRA1. The new mutant alleles reported here should advance our understanding of the etiology of hyperekplexia.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge