中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
FEBS Letters 2002-Nov

Heterologous expression of dihydroflavonol 4-reductases from various plants.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Stefan Martens
Teemu Teeri
Gert Forkmann

关键词

抽象

Dihydroflavonol 4-reductases (DFR) catalyze the stereospecific reduction of dihydroflavonols to the respective flavan 3,4-diols (leucoanthocyanidins) and might also be involved in the reduction of flavanones to flavan-4-ols, which are important intermediates in the 3-deoxyflavonoid pathway. Several cDNA clones encoding DFR have been isolated from different plant species. Despite the important function of these enzymes in the flavonoid pathway, attempts at heterologous expression of cDNA clones in Escherichia coli have failed so far. Here, three well known heterologous expression systems for plant-derived genes were tested to obtain the functional protein of DFR from Gerbera hybrids. Successful synthesis of an active DFR enzyme was achieved in eukaryotic cells, using either baker's yeast (Saccharomyces cerevisiae) or tobacco protoplasts (Nicotiana tabacum), transformed with expression vectors containing the open reading frame of Gerbera DFR. These expression systems provide useful and powerful tools for rapid biochemical characterization, in particular the substrate specificity, of the increasing number of cloned DFR sequences. Furthermore, this tool allows the stereospecific synthesis of (14)C-labeled leucoanthocyanidins in high quality and quantity, which is a prerequisite for detailed biochemical investigation of the less understood enzymatic reactions located downstream of DFR in anthocyanin, catechin and proanthocyanidin biosynthesis.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge