中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pesticide Biochemistry and Physiology 2018-Jun

Histopathological effects of Pedunsaponin A on Pomacea canaliculata.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Chunping Yang
Yue Tian
Tianxing Lv
Xiaoli Chang
Min Zhang
Guoshu Gong
Liulan Zhao
Song Yang
Huabao Chen

关键词

抽象

Pedunsaponin A, a novel molluscicidal compound isolated from Pueraria peduncularis, exhibits strong toxicity against Pomacea canaliculata. To determine the mechanisms of Pedunsaponin A toxicity, its effects on the organs and hemocytes of P. canaliculata were examined in this study. The results showed that Pedunsaponin A had significant toxic effects on different organs of the snail, including the lungs, gills, mantle, siphon tube, ventricle, pericardial cavity, hepatopancreas, kidneys, and the major symptom of this toxicity was the loss of cilia in the lungs and gills. Additionally, in further studies on the effects of Pedunsaponin A treatment, we found that the hemocyte count was changed and hemocyte morphology was damaged, which was primarily reflected by cytoplasm leakage, nuclei deformation, and significant reductions in the number of ribosomes and granulocyte mitochondria. Based on these results and considering that blood vessels are distributed in the lungs and gills, we hypothesized that Pedunsaponin A would first destroy the cilia, which disrupt physiological activities such as respiration, excretion and feeding, and then enter the hemolymph through blood vessels, disrupt the normal function of the hemocytes and destroy the snail immune system, eventually resulting in the death of the snail.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge