中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Inflammation Research 2011-Nov

Honokiol protects osteoblastic MC3T3-E1 cells against antimycin A-induced cytotoxicity.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Eun Mi Choi

关键词

抽象

OBJECTIVE

Honokiol is a phenolic compound isolated from the bark of Magnolia officinalis, a plant widely used in traditional medicine. Antimycin A, which inhibits complex III of the electron transport system, has been used as a reactive oxygen species generator in biological systems. In the present study, we investigated the protective effects of honokiol on antimycin A-induced dysfunction in osteoblastic MC3T3-E1 cells.

METHODS

Osteoblastic MC3T3-E1 cells were pre-incubated with honokiol before treatment with antimycin A, and markers of mitochondrial function and oxidative damage were examined. In addition, the effects of honokiol on the activation of PI3K (phosphoinositide 3-kinase) and CREB (cAMP-responsive element-binding protein) were examined in MC3T3-E1 cells.

RESULTS

Honokiol significantly (P < 0.05) increased cell viability and calcium deposition and decreased the production of ROS in the presence of antimycin A. Moreover, pretreatment with honokiol prior to antimycin A exposure significantly reduced antimycin A-induced mitochondrial membrane potential (MMP) dissipation, complex IV inactivation, nitrotyrosine formation, and thioredoxin reductase inactivation. Honokiol also induced the activation of PI3K and CREB inhibited by antimycin A, which demonstrates that honokiol utilizes the PI3K and CREB pathway to augment metabolic activity inhibited by antimycin A.

CONCLUSIONS

Honokiol may reduce or prevent osteoblast degeneration in osteoporosis or other degenerative disorders.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge