中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Applied Microbiology 2013-Jan

Hydrocarbon-degrading potential of microbial communities from Arctic plants.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
O Ferrera-Rodríguez
C W Greer
D Juck
L L Consaul
E Martínez-Romero
L G Whyte

关键词

抽象

OBJECTIVE

To explore rhizospheric microbial communities from Arctic native plant species evaluating their bacterial hydrocarbon-degrading capacities.

RESULTS

Eriophorum scheuchzeri, Potentilla cf. rubricaulis, Oxyria digyna, Salix arctica and Puccinellia angustata plant species were collected at Eureka (Canadian high Arctic) along with their rhizospheric soil samples. Their bacterial community fingerprints (16S rRNA gene, DGGE) were distinctive encompassing members from the phyla: Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria. Isolated diesel-degrading bacteria belonged to the phyla Actinobacteria and Proteobacteria. Strains of Mycobacterium, Nocardia, Rhodococcus, Intrasporangiaceae, Leifsoni and Arthrobacter possessed alkB and Pseudomonas possessed both ndoB and xylE gene sequences. Two Rhodococcus strains mineralized [1-(14) C] hexadecane at 5 and -5°C. From the rhizosphere of P. angustata, larger numbers of hydrocarbon-degrading bacteria were isolated than from other plant rhizosphere samples and all three genes alkB (from Actinobacteria), ndoB and xylE (from Pseudomonas) were detected by PCR.

CONCLUSIONS

(i) Arctic plants have unique rhizospheric bacterial communities. (ii) P. angustata has potential for phytoremediation research at high Arctic soils. (iii) Isolated bacteria mineralized hydrocarbons at ambient low temperatures.

CONCLUSIONS

To the best of our knowledge, this is the first rhizospheric exploration examining the phytoremediation potential of five Arctic plants and evaluating their microbial hydrocarbon-degrading capacities.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge