中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applied Microbiology and Biotechnology 2014-Nov

Hypericins: biotechnological production from cell and organ cultures.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Hosakatte Niranjana Murthy
Yun-Soo Kim
So-Young Park
Kee-Yoeup Paek

关键词

抽象

Hypericum perforatum L. (St. John's wort), a perennial flowering plant native to Europe, is widely used as a medicinal plant and has a long history of its use in the treatment of various ailments. Currently, H. perforatum is widely used as an herbal remedy for the treatment of mild to moderate depression. Hypericins are natural napthodianthrone compounds produced from H. perforatum (St. John's wort) which are having antitumor, antiviral (i.e., against human immunodeficiency and hepatitis C virus), antineoplastic, and antidepressant properties. Currently, field-grown plant materials are generally used for the commercial production of hypericins. It has been reported that hypericin accumulation in natural plants is influenced by different ecological and environmental conditions including light intensity, nitrogen availability, temperature, seasons, and growing regions. Therefore, up to 17-fold and 13-fold differences in hypericin and pseudohypericin amounts, respectively, are reported in different phytopharmaceutical preparations. Plant cell and organ cultures are effective systems for producing natural products, and attempts were made for the production of biomass and stable concentrations of hypericins through in vitro cultures of H. perforatum. Cell, callus, shoot, plantlet, and adventitious root cultures have been established and various chemical and physical factors which influence the biomass and secondary metabolite accumulation have been investigated. Large-scale plantlet and adventitious root cultures have also been attempted in H. perforatum in bioreactors, and various strategies have been applied for the production of higher biomass and secondary products. This review describes the biotechnological approaches employed for the production of hypericins and focuses upon the challenges and future prospects.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge