中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS Medicine 2007-May

Hyperoxic brain effects are normalized by addition of CO2.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Paul M Macey
Mary A Woo
Ronald M Harper

关键词

抽象

BACKGROUND

Hyperoxic ventilation (>21% O2) is widely used in medical practice for resuscitation, stroke intervention, and chronic supplementation. However, despite the objective of improving tissue oxygen delivery, hyperoxic ventilation can accentuate ischemia and impair that outcome. Hyperoxia results in, paradoxically, increased ventilation, which leads to hypocapnia, diminishing cerebral blood flow and hindering oxygen delivery. Hyperoxic delivery induces other systemic changes, including increased plasma insulin and glucagon levels and reduced myocardial contractility and relaxation, which may derive partially from neurally mediated hormonal and sympathetic outflow. Several cortical, limbic, and cerebellar brain areas regulate these autonomic processes. The aim of this study was to assess recruitment of these regions in response to hyperoxia and to determine whether any response would be countered by addition of CO2 to the hyperoxic gas mixture.

RESULTS

We studied 14 children (mean age 11 y, range 8-15 y). We found, using functional magnetic resonance imaging, that 2 min of hyperoxic ventilation (100% O2) following a room air baseline elicited pronounced responses in autonomic and hormonal control areas, including the hypothalamus, insula, and hippocampus, throughout the challenge. The addition of 5% CO2 to 95% O2 abolished responses in the hypothalamus and lingual gyrus, substantially reduced insular, hippocampal, thalamic, and cerebellar patterns in the first 48 s, and abolished signals in those sites thereafter. Only the dorsal midbrain responded to hypercapnia, but not hyperoxia.

CONCLUSIONS

In this group of children, hyperoxic ventilation led to responses in brain areas that modify hypothalamus-mediated sympathetic and hormonal outflow; these responses were diminished by addition of CO2 to the gas mixture. This study in healthy children suggests that supplementing hyperoxic administration with CO2 may mitigate central and peripheral consequences of hyperoxia.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge