中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cytogenetic and Genome Research 2016

Hypoxia Pathway Mutations in Pheochromocytomas and Paragangliomas.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Diana Amorim-Pires
Joana Peixoto
Jorge Lima

关键词

抽象

Pheochromocytomas (PCC) and sympathetic paragangliomas (PGL) are rare neuroendocrine tumors, which derive from chromaffin cells occurring in the adrenal medulla and extra-adrenal sympathetic paraganglia. PCC and PGL are often benign, catecholamine-producing tumors, responsible for a myriad of symptoms that may be potentially hazardous to the patient. In contrast, nonsecreting parasympathetic PGL, derived from chief cells, develop mainly in the head and neck region. Although PCC/PGL are more commonly sporadic tumors, germline mutations are present in up to 40% of the patients, ranking these tumors among those with the highest degree of heritability. PCC/PGL are associated with a variety of hereditary syndromes, comprising genetic alterations in RET, NF1, VHL, and SDHx genes, the last 2 being involved in regulating the hypoxia pathway. Additional hypoxia pathway-related genes have been recently associated with PCC/PGL development, namely EGLN1 and EPAS1. Thus, dysregulation of the hypoxia pathway seems to play a major role in PCC/PGL development, in particular through the stabilization of hypoxia-inducible factors and the appearance of a pseudohypoxia signature. This article is focused on reviewing the tumorigenic mechanisms resultant from VHL, SDHx, EGLN1, and EPAS1 mutations, as well as the associated tumors, namely PCC/PGL, and extra manifestations such as polycythemia. In the light of the recent discoveries, hypoxia pathway molecules appear as key players in PCC/PGL development.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge