中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Biology 2018-Sep

Hypoxia-induced changes in hemoglobins of Lake Victoria cichlids.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Guido van den Thillart
Inger Wilms
Maaike Nieveen
Roy E Weber
Frans Witte

关键词

抽象

In a previous study, broods of the Lake Victoria cichlid Haplochromis ishmaeli raised under hypoxic or normoxic conditions showed striking differences in isohemoglobin (isoHb) pattern that were not observed in two other cichlids that do not belong to the Lake Victoria species flock. We therefore hypothesized that the adaptive mechanism seen in H. ishmaeli in response to hypoxia constitutes a trait that the Lake Victoria species flock inherited from ancestors that lived in hypoxic environments. We tested this hypothesis by designing split-brood experiments with three other representative species from the same species flock: the insectivorous Haplochromis thereuterion, the mollusk-shelling Platytaeniodus degeni and the zooplanktivorous Haplochromis piceatus, while keeping H. ishmaeli as a reference. Split broods were raised, under either normoxia or hypoxia. All hypoxia-raised (HR) individuals of each of the four species exhibited a distinctly different isoHb pattern compared with their normoxia-raised (NR) siblings. The hemoglobin of HR H. thereuterion showed higher O2 affinity compared with NR siblings particularly in the presence of ATP and GTP, indicating that blood of HR juveniles has significantly improved O2-binding affinity under hypoxic conditions. We also tested the capacity to acclimate at greater age in two species by reversing the O2 condition after 7 (H. thereuterion) and 4 (H. ishmaeli) months. After reacclimation for 1 and 2 months, respectively, we found incomplete reversal with intermediate isoHb patterns. As three of the four species do not encounter hypoxic conditions in their environment, this unique trait seems to be a relic inherited from predecessors that lived in hypoxic environments.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge