中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Applied Physiology 2000-Oct

Hypoxia inhibits amino acid uptake in human lung fibroblasts.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
J L Berk
C A Hatch
R H Goldstein

关键词

抽象

Hypoxia and amino acid deprivation downregulate expression of extracellular matrix genes in lung fibroblasts. We examined the effect of hypoxia on amino acid uptake and protein formation in human lung fibroblasts. Low O(2) tension (0% O(2)) suppressed incorporation of [(3)H]proline into type I collagen without affecting [(35)S]methionine labeling of other proteins. Initial decreases in intracellular [(3)H]proline incorporation occurred after 2 h of exposure to 0% O(2), with maximal suppression of intracellular [(3)H]proline levels at 6 h of treatment. Hypoxia significantly inhibited the uptake of radiolabeled proline, 2-aminoisobutyric acid (AIB), and 2-(methylamino)isobutyric acid (methyl-AIB) while inducing minor decreases in leucine transport. Neither cycloheximide nor indomethacin abrogated hypoxia-related suppression of methyl-AIB uptake. Efflux studies demonstrated that hypoxia inhibited methyl-AIB transport in a bidirectional fashion. The downregulation of amino acid transport was not due to a toxic effect; function recovered on return to standard O(2) conditions. Kinetic analysis of AIB transport revealed a 10-fold increase in K(m) accompanied by a small increase in maximal transport velocity among cells exposed to 0% O(2). These data indicate that low O(2) tension regulates the system A transporter by decreasing transporter substrate affinity.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge