中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annals of Plastic Surgery 1999-May

Hypoxia upregulates VEGF production in keloid fibroblasts.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
D S Steinbrech
B J Mehrara
D Chau
N M Rowe
G Chin
T Lee
P B Saadeh
G K Gittes
M T Longaker

关键词

抽象

The etiology of keloid formation is diverse. They are characterized grossly as thick scar tissue that extends beyond the boundaries of the original wound. Histologically, keloids are composed of excessive collagen with an abnormally large number of partially or totally occluded microvessels. This occlusion of keloid microvessels has been hypothesized to contribute to a hypoxic microenvironment within these pathological scars. Vascular endothelial growth factor (VEGF), a potent endothelial cell mitogen, and proangiogenic cytokine have been implicated in normal and pathological wound healing. The purpose of this study was to evaluate the amount of VEGF protein production by fibroblast cell lines derived from keloids and normal human dermal skin in hypoxic compared with normoxic culture conditions. By enzyme-linked immunosorbent protein assay, VEGF was increased in both keloid and normal human dermal fibroblasts in hypoxia over normoxic controls. There was not, however, a significant difference between upregulation of VEGF protein when comparing the keloid and normal fibroblast groups. As the result of the data, alternative hypotheses for hypoxia-induced keloid formation were explored: (1) downstream modulation or signal transduction of VEGF, (2) VEGF production from cells other than fibroblasts, (3) the importance of matrix accumulation stimulated by hypoxia, or (4) increased migration of cells (other than fibroblasts) specific to keloid biology. These hypotheses may help explain the possible role of hypoxia in the pathogenesis of keloid formation. Future studies involving in situ hybridization or immunohistochemical analysis may offer greater insight into the mechanisms underlying keloid formation. Ultimately, our therapeutic goal is the utilization of biomolecular approaches for the suppression of keloid formation.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge