中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemico-Biological Interactions 2002-Nov

Idiosyncratic NSAID drug induced oxidative stress.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Giuseppe Galati
Shahrzad Tafazoli
Omid Sabzevari
Tom S Chan
Peter J O'Brien

关键词

抽象

Many idiosyncratic non-steroidal anti-inflammatory drugs (NSAIDs) cause GI, liver and bone marrow toxicity in some patients which results in GI bleeding/ulceration/fulminant hepatic failure/hepatitis or agranulocytosis/aplastic anemia. The toxic mechanisms proposed have been reviewed. Evidence is presented showing that idiosyncratic NSAID drugs form prooxidant radicals when metabolised by peroxidases known to be present in these tissues. Thus GSH, NADH and/or ascorbate were cooxidised by catalytic amounts of NSAIDs and hydrogen peroxide in the presence of peroxidase. During GSH and NADH cooxidation, oxygen uptake and activation occurred. Furthermore the formation of NSAID oxidation products was prevented during the cooxidation indicating that the cooxidation involved redox cycling of the first formed NSAID radical product. The order of prooxidant catalytic effectiveness of fenamate and arylacetic acid NSAIDs was mefenamic acid>tolfenamic acid>flufenamic acid, meclofenamic acid or diclofenac. Diphenylamine, a common moiety to all of these NSAIDs was a more active prooxidant for NADH and ascorbate cooxidation than these NSAIDs which suggests that oxidation of the NSAID diphenylamine moiety to a cation and/or nitroxide radical was responsible for the NSAID prooxidant activity. The order of catalytic effectiveness found for sulfonamide derivatives was sulfaphenazole>sulfisoxazolez.Gt;dapsone>sulfanilic acid>procainamide>sulfamethoxazole>sulfadiazine>sulfadimethoxine whereas sulfanilamide, sulfapyridine or nimesulide had no prooxidant activity. Although indomethacin had little prooxidant activity, its major in vivo metabolite, N-deschlorobenzoyl indomethacin had significant prooxidant activity. Aminoantipyrine the major in vivo metabolite of aminopyrine or dipyrone was also more prooxidant than the parent drugs. It is hypothesized that the NSAID radicals and/or the resulting oxidative stress initiates the cytotoxic processes leading to idiosyncratic toxicity.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge