中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archiv der Pharmazie 2001-Jun

Inactivation of protein farnesyltransferase by active-site-targeted dicarbonyl compounds.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
K J Okolotowicz
W J Lee
R F Hartman
A Y Kim
S R Ottersberg
D E Robinson
S R Lefler
S D Rose

关键词

抽象

Upon farnesylation by protein farnesyltransferase (FTase), key proteins become compartmentalized in cells. For example, cell membrane localization is essential for the mitogenic role of mutant Ras protein, which acts as a switch for cancer cell proliferation. We report that alpha-dicarbonyl compounds derived from the isoprenoid skeleton or other hydrophobic groups potently obstruct farnesylation of a Ras model peptide by human recombinant FTase in vitro. A geranyl-derived isoprenoid diketone, 5,9-dimethyl-8-decene-2,3-dione, at 17 microM caused a 62% reduction in FTase activity after 30 minutes. A farnesyl-derived isoprenoid diketone, 5,9,13-trimethyl-8,12-tetradecadiene-2,3-dione, at 93 microM caused a 94% reduction after 30 minutes. Other dicarbonyl compounds found to be effective against FTase in vitro were (+/-)-6-(camphorquinone-10-sulfonamido)-hexanoic acid, 4,4'-biphenyldiglyoxaldehyde, dehydroascorbic acid 6-palmitate, 2-oxododecanal, and phenylglyoxal. Higher concentrations of the alpha-dicarbonyl compound resulted in more rapid and more extensive inactivation. These findings demonstrate that alpha-dicarbonyl compounds targeted to FTase interfere with protein farnesylation in vitro and may lead to derivatives that have utility as chemotherapeutic agents.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge