中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Nutrition and Cancer 2010

Increased ubiquitination of multidrug resistance 1 by ginsenoside Rd.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Yuba Raj Pokharel
Nak Doo Kim
Hyo-Kyung Han
Won Keun Oh
Keon Wook Kang

关键词

抽象

MCF-7/ADR cells, a doxorubicin-resistant human breast cancer cell line, acquires resistance to several chemotherapeutic agents, such as anthracylines and taxol, via overexpression of the multidrug resistance1 (MDR1) gene. The present study was designed to clarify whether ginsenosides affect the expression of the MDR1 gene in MCF-7/ADR cells. Ginsenoside Rd, Re, Rb1, and Rg1 (100 microg/ml) decreased MDR1 protein levels in MCF-7/ADR cells. In particular, ginsenoside Rd most potently inhibited MDR1 protein expression without cytotoxicity, but did not change mRNA levels or nuclear levels of key transcriptional factors for MDR1 gene expression, hypoxia inducible factor-1alpha, CCAAT-enhancer binding protein beta, Forkhead box-containing protein, O subfamily1, or Y-box binding protein-1. Reporter gene analyses showed that ginsenoside Rd did not decrease MDR1 gene transcription or the pregnane X receptor reporter. MDR1 protein stability is dependent on ubiquitin-dependent protein degradation. We further found that ginsenosides Rd increased ubiquitination of MDR1. Moreover, doxorubicin resistance in MCF-7/ADR cells was reversed by ginsenoside Rd treatment. These results propose that ginseng administration with other anti-cancer agents may be useful for the treatment of chemotherapy-resistant breast cancer through down-regulating MDR1 protein.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge