中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurochemistry 2000-Oct

Induction of glycerol phosphate dehydrogenase gene expression during seizure and analgesia.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
W A Link
G Kauselmann
B Mellström
D Kuhl
J R Naranjo

关键词

抽象

Using mRNA differential display, we found that the gene for NAD(+)-dependent glycerol phosphate dehydrogenase (GPDH; EC 1.1.1.8) is induced in rat brain following seizure activity. Northern blot and in situ hybridization analysis confirmed the differential display results; they also showed, in a separate model of neuronal activation, that after thermal noxious stimulation of the hind-paws, a similar increase in GPDH mRNA occurs in the areas of somatotopic projection in the lumbar spinal cord. Surprisingly, administration of analgesic doses of morphine or the nonsteroidal antiinflammatory drugs aspirin, metamizol (dipyrone), and indomethacin also increased GPDH mRNA levels in rat spinal cord. The opioid receptor antagonist naloxone completely blocked morphine induction of GPDH but had no effect on GPDH induction by noxious heat stimulation or metamizol treatment, implicating different mechanisms of GPDH induction. Nevertheless, in all cases, induction of the GPDH gene requires adrenal steroids and new protein synthesis, as the induction was blocked in adrenalectomized rats and by cycloheximide treatment, respectively. Our results suggest that the induction of the GPDH gene upon peripheral noxious stimulation is related to the endogenous response to pain as it is mimicked by exogenously applied analgesic drugs.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge