中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cellular Physiology and Biochemistry 2014

Induction of suicidal erythrocyte death by novobiocin.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Adrian Lupescu
Rosi Bissinger
Tabea Herrmann
Gergely Oswald
Kashif Jilani
Florian Lang

关键词

抽象

BACKGROUND

Novobiocin, an aminocoumarin antibiotic, interferes with heat shock protein 90 and hypoxia inducible factor dependent gene expression and thus compromises cell survival. Similar to survival of nucleated cells, erythrocyte survival could be disrupted by eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and by phospholipd scrambling of the cell membrane with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca(2+)-activity ([Ca(2+)]i). The Ca(2+) sensitivity of phospholipid scrambling is enhanced by ceramide. The present study explored, whether novobiocin elicits eryptosis.

METHODS

[Ca(2+)]i was estimated from Fluo3-fluorescence, ceramide abundance utilizing fluorescent antibodies, cell volume from forward scatter, phosphatidylserine-exposure from annexin V binding.

RESULTS

A 48 hours exposure to novobiocin (500 µM) was followed by a significant increase of [Ca(2+)]i, decrease of forward scatter, increase of annexin-V-binding and enhanced ceramide formation. Removal of extracellular Ca(2+) virtually abrogated the increase of annexin-V-binding following novobiocin exposure.

CONCLUSIONS

Novobiocin stimulates eryptosis, an effect at least in part due to entry of extracellular Ca(2+) and formation of ceramide.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge