中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Pharmaceutics 2014-Nov

Influence of Quil A on liposomal membranes.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
T Paepenmüller
C C Müller-Goymann

关键词

抽象

Quil A is the purified saponin fraction extracted from the bark of Quillaja saponaria Molina. Besides its utilisation as a surfactant, it is commonly used in a pseudo-ternary system with cholesterol and phospholipid to form colloidal structures known as ISCOMs (immunostimulating complexes). Their appropriateness as immune stimulating drug carriers has been widely demonstrated, albeit the evaluation of physico-chemical properties of the ISCOM matrix still draws a heterogeneous picture. The aim of our study was to elucidate the effects of Quil A on liposomal phosphatidylcholine/cholesterol dispersions as this interaction is regarded as the major step for the formation of the ISCOM matrix. Transmission electron microscopy was applied to observe structural changes of liposomal dispersions upon addition of Quil A. A formation of ISCOM matrices readily out of the liposomal membrane was proven. The entrapment efficiency (EE) of Arsenazo III as well as differential thermal analysis (DSC) also demonstrated an interaction between the components above a critical concentration of Quil A. To further clarify the effects of interaction, Langmuir trough experiments of insoluble monolayers of both cholesterol and PC and their interaction with Quil A were performed. Measurable effects even below the critical concentration of Quil A (derived from DSC and EE) were shown. Cholesterol had a major impact on the formation and stabilisation of the ISCOM matrix.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge