中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Signaling and Behavior 2007-Jul

Influence of sugars on blue light-induced chloroplast relocations.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Agnieszka Katarzyna Banaś
Halina Gabryś

关键词

抽象

The aim of this study was to investigate the influence of sugars on blue light-induced chloroplast movements. Sucrose and glucose inhibited chloroplast responses in the detached leaves of Arabidopsis thaliana and in Lemna trisulca fronds in a concentration and time-dependent manner. The prolonged exposure necessary for inhibition indicates that sugars may act via altered gene expression. Overexpression of phototropin2, a photoreceptor responsible for the strong blue light response of chloroplasts, counteracted the sugar effect. This may suggest that sugars modify some component(s) of the phototropin2-mediated signal transduction pathway. The expression of PHOT2 was not suppressed by sugars in wild type plants, it was even upregulated by glucose. Impaired chloroplast movements were observed only in mature Arabidopsis plants. The mRNA of SAG12, a late senescence marker, was not detectable in the sugar-incubated leaves. The SAG13 mRNA level and its regulation by sugars were similar in wild type and PHOT2 overexpressor. Thus, the sugar insensitivity of 35S:PHOT2 chloroplast responses was not due to delayed senescence. The sugar-induced transduction pathway involved remains unclear. 3-O-methylglucose did not affect chloroplast movements suggesting the participation of a hexokinase-dependent pathway. Only the amplitude of avoidance response was reduced in gin2-1, a hexokinase1 null mutant. Probably other hexokinases, or glycolysis-associated signals play a role in the suppression of chloroplast responses.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge