中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Ophthalmology 2019

Inhibition of Obtusifolin on retinal pigment epithelial cell growth under hypoxia.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Li-Fei Wang
Zhong-Yang Yan
Ya-Lin Li
Yan-Hui Wang
Sheng-Juan Zhang
Xin Jia
Lu Lu
Yan-Xia Shang
Xin Wang
Yun-Huan Li

关键词

抽象

To explore the effect of Obtusifolin on retinal pigment epithelial cell growth under hypoxia.

METHODS
In vitro chemical hypoxia model of ARPE-19 cells was established using cobalt chloride (CoCl2). Cell viability was tested by cell counting kit-8 (CCK-8) assay. Western blot and real-time quantitative polymerase chain reaction were applied to detect proteins and mRNAs respectively. Flow cytometry was used to examine the cell cycle. Secretion of vascular endothelial growth factor (VEGF) was tested by using enzyme linked immunosorbent assay (ELISA).

RESULTS
Under the chemical hypoxia model established by CoCl2, hypoxia inducible factor-1α (HIF-1α) mRNA and protein levels was up-regulated. Cell viability was increased and the proportion of S phase was higher. Obtusifolin could reduce cell viability under hypoxic conditions and arrest cells in G1 phase. Obtusifolin reduced the expression of Cyclin D1 and proliferating cell nuclear antigen (PCNA) in the hypoxic environment and increased the expression of p53 and p21. The levels of VEGF, VEGFR2 and eNOS proteins and mRNA were significantly increased under hypoxia while Obtusifolin inhibited the increasing.

Obtusifolin can inhibit cell growth under hypoxic conditions and down-regulate HIF-1/VEGF/eNOS secretions in ARPE-19 cells.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge