中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecules 2018-Oct

Inhibition of a Snake Venom Metalloproteinase by the Flavonoid Myricetin.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Lina María Preciado
Jeffrey Comer
Vitelbina Núñez
Paola Rey-Súarez
Jaime Andrés Pereañez

关键词

抽象

Most of the snakebite envenomations in Central and South America are caused by species belonging to Bothrops genus. Their venom is composed mainly by zinc-dependent metalloproteinases, responsible of the hemorrhage characteristic of these envenomations. The aim of this study was to determine the inhibitory ability of ten flavonoids on the in-vitro proteolytic activity of Bothrops atrox venom and on the hemorrhagic, edema-forming and myonecrotic activities of Batx-I, the most abundant metalloproteinase isolated from this venom. Myricetin was the most active compound, exhibiting an IC 50 value of 150 μ M and 1021 μ M for the inhibition of proteolytic and hemorrhagic activity, respectively. Independent injection experiments, with a concentration of 1600 μ M of myricetin administered locally, immediately after toxin injection, demonstrated a reduction of 28 ± 6 % in the hemorrhagic lesion. Additionally, myricetin at concentrations 800, 1200 and 1600 μ M promoted a reduction in plasma creatine kinase activity induced by Batx-I of 21 ± 2 % , 60 ± 5 % and 63 ± 2 % , respectively. Molecular dynamics simulations coupled with the adaptive biasing method suggest that myricetin can bind to the metalloproteinase active site via formation of hydrogen bonds between the hydroxyl groups 3', 4' and 5' of the benzyl moiety and amino acid Glu143 of the metalloproteinase. The hydroxyl substitution pattern of myricetin appears to be essential for its inhibitory activity. Based on this evidence, myricetin constitutes a candidate for the development of inhibitors to reduce local tissue damage in snakebite envenomations.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge