中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Biochemistry and Biophysics 1995-Nov

Inhibition of neutrophil superoxide generation by hypericin, an antiretroviral agent.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
T Nishiuchi
T Utsumi
T Kanno
Y Takehara
H Kobuchi
T Yoshioka
A A Horton
T Yasuda
K Utsumi

关键词

抽象

We previously reported that phorbol 12-myristate 13-acetate (PMA)-induced superoxide (O2.-) generation of neutrophils was inhibited by hypericin, a photosensitizing pigment found in St. Johnswort (herb Hypericin triquetrifolium Turra), via a mechanism involving protein kinase C (PKC). To obtain further insights into the mechanism of inhibition, the effects of hypericin on stimulation-dependent O2.- generation and related enzymes of neutrophils were investigated. Hypericin inhibited O2.- generation of neutrophils induced by PKC-dependent and -independent stimuli in a light- and concentration-dependent manner. Oxygen was required for the light-dependent inhibition by hypericin. NADPH oxidase activity in a cell-free system and TNF-alpha-induced tyrosyl phosphorylation of neutrophil proteins were also inhibited by hypericin in a concentration- and light-dependent manner. However, tyrosine kinase of p60src, an enzyme not bound to a membrane, was not inhibited either in the light or in the dark. Oxygen uptake of neutrophils by photosensitization with hypericin resulted in the formation of singlet oxygen (1O2), O2.-, and hydroxyl radical (.OH) and enhanced lipid peroxidation. The formation of 1O2 was inhibited by azide, a quencher of 1O2, but not by desferrioxamine (DSF), a ferric ion chelator. By contrast, both generation of .OH and lipid peroxidation were inhibited by DSF but not by azide. Furthermore, PMA-induced O2.- generation inhibited by hypericin partially recovered in the presence of azide but not DSF. These results suggested that the light-dependent inhibition of O2.- generation by hypericin might be due to inhibition of tyrosine kinase, PKC, and NADPH oxidase via an oxygen-dependent mechanism, possibly through both Type I and II photosensitization mechanisms.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge