中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Medicinal Chemistry 1997-Mar

Inhibition of stromelysin-1 (MMP-3) by P1'-biphenylylethyl carboxyalkyl dipeptides.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
C K Esser
R L Bugianesi
C G Caldwell
K T Chapman
P L Durette
N N Girotra
I E Kopka
T J Lanza
D A Levorse
M MacCoss

关键词

抽象

Carboxyalkyl peptides containing a biphenylylethyl group at the P1' position were found to be potent inhibitors of stromelysin-1 (MMP-3) and gelatinase A (MMP-2), in the range of 10-50 nM, but poor inhibitors of collagenase (MMP-1). Combination of a biphenylylethyl moiety at P1', a tert-butyl group at P2', and a methyl group at P3' produced orally bioavailable inhibitors as measured by an in vivo model of MMP-3 degradation of radiolabeled transferrin in the mouse pleural cavity. The X-ray structure of a complex of a P1-biphenyl inhibitor and the catalytic domain of MMP-3 is described. Inhibitors that contained halogenated biphenylylethyl residues at P1' proved to be superior in terms of enzyme potency and oral activity with 2(R)-[2-(4'-fluoro-4-biphenylyl)ethyl]-4(S)-n-butyl-1,5-pentane dioic acid 1-(alpha(S)-tert-butylglycine methylamide) amide (L-758,354, 26) having a Ki of 10 nM against MMP-3 and an ED50 of 11 mg/kg po in the mouse pleural cavity assay. This compound was evaluated in acute (MMP-3 and IL-1 beta injection in the rabbit) and chronic (rat adjuvant-induced arthritis and mouse collagen-induced arthritis) models of cartilage destruction but showed activity only in the MMP-3 injection model (ED50 = 6 mg/kg iv).

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge