中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2019-Nov

Integrative response of arsenic uptake, speciation and detoxification by Salix atrocinerea.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Alejandro Navazas
Sophie Hendrix
Ann Cuypers
Aida González

关键词

抽象

Despite arsenic (As) being very toxic with deleterious effects on metabolism, it can be tolerated and accumulated by some plants. General genetic mechanisms responsible for As tolerance in plants, including Salix species, have been described in transcriptomic analysis, but further experimental verification of the significance of particular transcripts is needed. In this study, a Salix atrocinerea clone, able to thrive in an As-contaminated brownfield, was grown hydroponically in controlled conditions under an As concentration similar to the bioavailable fraction of the contaminated area (18 mg kg-1) for 30 days. At different time points, i.e. short-term and long-term exposure, biometric data, As accumulation, phytochelatin synthesis, non-protein thiol production and expression of target genes related to these processes were studied. Results showed that S. atrocinerea presents a great tolerance to As and accumulates up to 2400 mg As kg-1 dry weight in roots and 25 mg As kg-1 dry weight in leaves. Roots reduce As V to As III rapidly, with As III being the predominant form of As accumulated in root tissues, whereas in the leaves it is As V. After 1 d of As exposure, roots and leaves show de novo synthesis and an increase in non-protein thiols as compared to the control. Integrating these data on As accumulation in the plant and its speciation, non-protein thiol production and the kinetic gene expression of related target genes, a fundamental role is highlighted for these processes in As accumulation and tolerance in S. atrocinerea. As such, this study offers new insights in the plant tolerance mechanisms to As, which provides important knowledge for future application of high-biomass willow plants in phytoremediation of As-polluted soils.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge