中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental biosafety research

Investigating recombinant protein exudation from roots of transgenic tobacco.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Francesca Pizzuti
Lorenza Daroda

关键词

抽象

It is widely acknowledged that plant-made pharmaceuticals (PMPs) offer numerous benefits, including inexpensive production, biological safety and the facility for production at agricultural scale. At the same time, it is important to minimize any potential risk associated with this new technology, including the potential release of bioactive proteins into the environment. To address this issue, we studied transgenic Nicotiana benthamiana and Nicotiana tabacum plants expressing two recombinant single-chain variable fragment (scFv) antibodies, respectively scFvB9 and scFvH10. ScFvB9 was raised against glycoprotein G1 of Tomato spotted wilt virus (TSWV), and scFvH10 was raised against human tumor-associated antigen tenascin-C. Both antibodies were targeted to the secretory pathway using the N-terminal signal peptide from Phaseolus vulgaris polygalacturonase-inhibiting protein (PGIP), and scFvH10 carried in addition a C-terminal KDEL tetrapeptide for retention in the endoplasmic reticulum (ER). Sterile hydroponic cultures were established, allowing us to investigate whether scFvB9 and scFvH10 were present in root exudates. Intercellular fluids extracted from different plant tissues were analyzed by western blotting revealing the presence of scFvB9. Successful secretion of scFvB9 in hydroponic medium was also demonstrated, whereas no scFvH10 could be detected in the leaf, stem or root apoplast, nor secreted into the hydroponic medium. Our results show that scFvH10 release or diffusion from the roots of transgenic plants was not occurring, suggesting that the KDEL signal might contribute to the environmental biosafety of crops producing PMPs.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge