中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2011-Jul

Isolation and characterization of Arabidopsis halleri and Thlaspi caerulescens phytochelatin synthases.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Claire-Lise Meyer
Daniel Peisker
Mikael Courbot
Adrian Radu Craciun
Anne-Claire Cazalé
Denis Desgain
Henk Schat
Stephan Clemens
Nathalie Verbruggen

关键词

抽象

The synthesis of phytochelatins (PC) represents a major metal and metalloid detoxification mechanism in various species. PC most likely play a role in the distribution and accumulation of Cd and possibly other metals. However, to date, no studies have investigated the phytochelatin synthase (PCS) genes and their expression in the Cd-hyperaccumulating species. We used functional screens in two yeast species to identify genes expressed by two Cd hyperaccumulators (Arabidopsis halleri and Thlaspi caerulescens) and involved in cellular Cd tolerance. As a result of these screens, PCS genes were identified for both species. PCS1 was in each case the dominating cDNA isolated. The deduced sequences of AhPCS1 and TcPCS1 are very similar to AtPCS1 and their identity is particularly high in the proposed catalytic N-terminal domain. We also identified in A. halleri and T. caerulescens orthologues of AtPCS2 that encode functional PCS. As compared to A. halleri and A. thaliana, T. caerulescens showed the lowest PCS expression. Furthermore, concentrations of PC in Cd-treated roots were the highest in A. thaliana, intermediate in A. halleri and the lowest in T. caerulescens. This mirrors the known capacity of these species to translocate Cd to the shoot, with T. caerulescens being the best translocator. Very low or undetectable concentrations of PC were measured in A. halleri and T. caerulescens shoots, contrary to A. thaliana. These results suggest that extremely efficient alternative Cd sequestration pathways in leaves of Cd hyperaccumulators prevent activation of PC synthase by Cd²⁺ ions.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge