中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1972-Jul

Isolation of Plastids from Sunflower Cotyledons during Germination.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
C Schnarrenberger
A Oeser
N E Tolbert

关键词

抽象

Plastids from cotyledons of sunflower (Helianthus annus L.) seedlings, germinated in the dark or in the light, were isolated by isopycnic sucrose density gradient centrifugation. At all stages of development the whole plastids contained triose phosphate isomerase, NADPH-glyoxylate reductase, and l-dihydroxyphenylalanine oxidase, which were used as marker enzymes. At the beginning of germination the isopycnic density of whole plastids (proplastids) was about 1.22 g cm(-3). During development of proplastids into etioplasts in the dark, their isopycnic density increased to 1.26 g cm(-3). During exposure of germinating seedlings to white light for 2 days, the isopycnic density of whole plastids decreased from 1.26 to 1.22 g cm(-3). These changes in isopycnic density of plastids on sucrose density gradients are consistent with changes in the plastid ultrastructure caused by the protein-rich prolamellar body or by the lipid-rich thylakoids. Broken plastids (thylakoids), determined by the main peak of chlorophyll, increased in isopycnic density from less than 1.14 to about 1.17 g cm(-3) during illumination. During germination no major changes occurred in the isopycnic density of mitochondria. Microbodies had an isopycnic density of 1.24 g cm(-3) in very early stages of germination, and their density increased to 1.265 g cm(-3), when glyoxysomal enzymes reached maximum development.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge